Alternative splicing of CD200 is regulated by an exonic splicing enhancer and SF2/ASF

نویسندگان

  • Zhiqi Chen
  • Xuezhong Ma
  • Jianhua Zhang
  • Jim Hu
  • Reginald M. Gorczynski
چکیده

CD200, a type I membrane glycoprotein, plays an important role in prevention of inflammatory disorders, graft rejection, autoimmune diseases and spontaneous fetal loss. It also regulates tumor immunity. A truncated CD200 (CD200(tr)) resulting from alternative splicing has been identified and characterized as a functional antagonist to full-length CD200. Thus, it is important to explore the mechanism(s) controlling alternative splicing of CD200. In this study, we identified an exonic splicing enhancer (ESE) located in exon 2, which is a putative binding site for a splicing regulatory protein SF2/ASF. Deletion or mutation of the ESE site decreased expression of the full-length CD200. Direct binding of SF2/ASF to the ESE site was confirmed by RNA electrophoretic mobility shift assay (EMSA). Knockdown of expression of SF2/ASF resulted in the same splicing pattern as seen after deletion or mutation of the ESE, whereas overexpression of SF2/ASF increased expression of the full-length CD200. In vivo studies showed that viral infection reversed the alternative splicing pattern of CD200 with increased expression of SF2/ASF and the full-length CD200. Taken together, our data suggest for the first time that SF2/ASF regulates the function of CD200 by controlling CD200 alternative splicing, through direct binding to an ESE located in exon 2 of CD200.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer.

The general splicing factor SF2/ASF binds in a sequence-specific manner to a purine-rich exonic splicing enhancer (ESE) in the last exon of bovine growth hormone (bGH) pre-mRNA. More importantly, SF2/ASF stimulates in vitro splicing of bGH intron D through specific interaction with the ESE sequences. However, another general splicing factor, SC35, does not bind the ESE sequences and has no effe...

متن کامل

An erythroid differentiation-specific splicing switch in protein 4.1R mediated by the interaction of SF2/ASF with an exonic splicing enhancer.

Protein 4.1R is a vital component of the red blood cell membrane cytoskeleton. Promotion of cytoskeletal junctional complex stability requires an erythroid differentiation stage-specific splicing switch promoting inclusion of exon 16 within the spectrin/actin binding domain. We showed earlier that an intricate combination of positive and negative RNA elements controls exon 16 splicing. In this ...

متن کامل

Mapping the SF2/ASF binding sites in the bovine growth hormone exonic splicing enhancer.

Splicing of the last intron (intron D) of the bovine growth hormone pre-mRNA requires the presence of a downstream exonic splicing enhancer (ESE). This enhancer is contained within a 115-nucleotide FspI-PvuII (FP) fragment located in the middle of the last exon (exon 5). Previous work showed that the splicing factor SF2/ASF binds to this FP region and stimulates splicing of intron D in vitro. H...

متن کامل

Deletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing

Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain...

متن کامل

The evolution of science at the National Institutes of Health and the National Institute of Environmental Health Sciences.

Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginineand serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010